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This paper describes an experimental investigation of transport processes in the near 
wake of a circular cylinder a t  a Reynolds number of 140000. The flow in the first 
eight diameters of the wake was measured using X-array hot-wire probes mounted 
on a pair of whirling arms. This flying-hot-wire technique increases the relative 
velocity component along the probe axis and thus decreases the relative flow angle 
to usable values in regions where fluctuations in flow velocity and direction are large. 
One valuable fringe benefit of the technique is that rotation of the arms in a uniform 
flow applies a wide range of relative flow angles to the X-arrays, making them 
inherently self-calibrating in pitch. An analog circuit was used to generate an 
intermittency signal, and a fast surface-pressure sensor was used to generate a phase 
signal synchronized with the vortex-shedding process. The phase signal allowed 
sorting of the velocity data into 16 populations, each having essentially constant 
phase. An ensemble average for each population yielded a sequence of pictures of 
the instantaneous mean flow field, with the vortices frozen as they would be in a 
photograph. In  addition to globally averaged data for velocity and stress, the 
measurements yield non-steady mean data (in the sense of an average a t  constant 
phase) for velocity, intermittency, vorticity, stress and turbulent-energy production 
as a function of phase for the first eight diameters of the near wake. The stresses were 
resolved into a contribution from the periodic motion and a contribution from the 
random motion at constant phase. The two contributions are found to have 
comparable amplitudes but quite different geometries, and the time average of their 
sum (the conventional global Reynolds stress) therefore has a quite-complex structure. 
The non-steady mean-vorticity field is obtained with good resolution as the curl of 
the non-steady mean-velocity field. Less than half of the shed circulation appears in 
the vortices, and there is a slow decay of this circulation for each shed vortex as it 
moves downstream. In the discussion, considerable emphasis is put on the topology 
of the non-steady mean flow, which emerges as a pattern of centres and saddles in 
a frame of reference moving with the eddies. The kinematics of the vortex-formation 
process are described in terms of the formation and evolution of saddle points between 
vortices in the first few diameters of the near wake. One important conclusion is that 
a substantial part of the turbulence production is concentrated near the saddles and 
that the mechanism of turbulence production is probably vortex stretching a t  
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intermediate scales. Entrainment is also found to be closely associated with saddles 
and to  be concentrated near the upstream-facing interface of each vortex. 

B. Cantwell and D. Coles 

1. Introduction 
Motivation 

It has become increasingly evident to  many workers in turbulence research that the 
operation of Reynolds averaging in the equations of motion hides from view many 
important features of turbulent flow. Various conditional sampling and averaging 
techniques have recently been developed to study these features, with the hope 
eventually of understanding better the mechanisms of turbulence. The most important 
result so far is a new perception of the large eddies which account for much of the 
transport of momentum, heat, and mass. Until recently, a large eddy was often 
visualized as an accidental, energetic, large-scale motion energized primarily by the 
straining action of the mean flow. I n  the new view, a large eddy is visualized as an 
organized, coherent concentration of large-scale vorticity energized primarily through 
entrainment while retaining its geometry over many characteristic lengths of the 
motion. The cumulative signature of such coherent structures is the mean flow. 

Although the concept of the coherent large eddy represents an advance in our 
physical understanding of turbulence, many issues remain unresolved. For example, 
it is generally accepted that the motions a t  the smallest scale of a flow tend to become 
independent of the large eddies as the Reynolds number increases. Although many 
measurements in different flows support this view, virtually all the evidence is based 
on measurements of spectra. While this evidence substantially confirms the k l  
behaviour predicted by Kolmogorov (1941), the fact is that  very little is known about 
the coupling between the organized motion and the smaller scales (the energy 
cascade), or about the mechanisms by which energy delivery and dissipation are 
actually accomplished. 

The flow in the near wake of a circular cylinder at high subcritical Reynolds number 
is a flow in which coherent large eddies can be studied in their natural state. The eddies 
in question are turbulent line vortices which are produced and shed in an essentially 
regular manner. Except for some dispersion, the vortices are not subject to interactions 
that might obscure their identity, a t  least in the first few diameters downstream of 
the cylinder. The relative ease with which regular and irregular motions can be 
separated thus makes the near wake an attractive case €or studying turbulent 
transport. I n  short, i t  is possible to identify the large eddy for this flow to observe 
its formation, and to trace its history as i t  is carried downstream. I n  a frame of 
reference fixed to the cylinder, the non-steady mean flow field takes on the appearance 
of a wave having a frequency equal to the shedding frequency and a phase velocity 
or celerity which increases continuously with increasing distance downstream. In a 
frame of reference moving downstream a t  some representative phase velocity, the 
instantaneous mean streamlines form a pattern of centres and saddles which delineate 
the individual large eddies as almost stationary vorticity concentrations of alternating 
sign. 

The purpose of the experiment described in this paper was to observe the Bow in 
the moving frame of reference just described. The method, described in detail in §§Z 
and 3, was to use X-array hot-wire sensors on the ends of a pair of whirling arms 
to sample the flow a t  closely spaced points along an arc of relatively large diameter. 
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Simultaneously, the phase of the vortex-shedding process was recorded by sampling 
the surface pressure a t  a suitable point on the cylinder model. For a large number 
of probe revolutions along each of many different probe arcs, the data associated with 
each point in the flow field were sorted into 16 groups, each corresponding to a small 
interval for the phase of the surface pressure signal. After ensemble averaging, the 
result was a 16-frame animation of the non-steady mean flow in terms of intermittency, 
instantaneous mean velocity, instantaneous mean vorticity, and instantaneous 
Reynolds stresses. 

Analytical background 

The flow in the near wake can be viewed formally as a combination of a global mean 
component s ,  a periodic mean component s", and a random component s', where s is 
any variable. By definition, the total variable s is the sum 

s = b+s"+s'. ( 1 )  

This notation, and part of the development that follows, are borrowed from 
Reynolds & Hussain (1972).t There are two different averaging processes which can 
be defined operationally in terms of manipulations actually carried out for the present 
digital data. At each of many points in the flow field, there is available a population 
of N (=  16384) samples s, from a given probe. The global mean S is defined by 

counting: N 

NS= s,. (2) 
n=1 

This population of N samples is then divided into 16 nominally equal subpopulations 
of Ni (= 1024) samples, each subpopulation being associated with a particular phase 
interval for the shedding process. The mean a t  constant phase ( s )  is again defined 
by counting within each subpopulation : 

Ni 

N , ( s )  = I: S, (i = 1,2, ..., 16). 

The periodic component s" is then defined as the difference 

w = l  
(3) 

s"= (s)-b. (4) 

It follows from these definitions, as pointed out by Reynolds & Hussain, that 2 = 0 
(the periodic motion has zero mean when averaged over one cycle) ; that ( s ' )  = 0 (the 
random fluctuations have zero mean a t  constant phase) ; and that 3 = 0 (the periodic 
and random motions are uncorrelated). To implement these ideas in the Navier-Stokes 
equations, first put s = ( s )  +s'; then take ( ) (the average a t  constant phase); then 
put ( s )  = i + B ;  then take the average over one cycle. If s is velocity, each of the 
quantities s ,  ( s ) ,  5, s", s' separately satisfies the ordinary continuity equation. The 
momentum equation for the mean flow a t  constant phase has the conventional form, 
except for the presence of a non-steady term, 

t Reynolds & Hussain refer to s as time average (meaning average over time) and to ( 8 )  as 
phase average (meaning not average over phase, but average a t  constant phase). We prefer to call 
these quantities the global mean and the mean a t  constant phase, respectively. 
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The momentum equation for the global mean flow (equation (2 .5)  of Reynolds & 
Hussain) has the form 

The contributions of the random and periodic motions to the Reynolds stresses 
associated with the global mean flow are thus displayed explicitly. 

Reynolds & Hussain were concerned with the case of a small periodic disturbance 
,T to  an established mean flow 8. It was therefore appropriate for them to take their 
global mean flow to be well defined, i.e. real in the Reynolds-averaged sense, in the 
absence of the disturbance. I n  the present work on coherent structure, i t  is more 
appropriate to write, in lieu of (1) and (4). 

s = (s)+s’ ,  (7 1 
and to  proceed only as far as (5). It is now the periodic mean flow that is considered 
to be real in the Reynolds-averaged sense. The governing dynamical equation ( 5 )  
includes only the conventional Reynolds stresses (u; u;) which are generated by 
spatially local random fluctuations at constant phase. These stresses directly control 
the dynamics of the coherent structures and thus operate at a lower level than the 
stresses in (6). Turbulence is interpreted as a local phenomenon, attached to and 
moving with the individual vortices and their connecting saddles. Phase information 
is retained a t  the largest scale of the flow. 

A primary objective of the present research was measurement of the various 
quantities that play the role of Reynolds stresses in ( 5 )  and (6). The most important 
of these from the point of view of coherent structure is (u;  ui). Of equal importance 
from the point of view of conventional turbulence modelling is .iii Gj, which is needed 
along with (u; u i )  for any inquiry into the relative contributions of the periodic and 
random motions to Reynolds-stress terms in the global mean-momentum equation 
(6). Examples of these quantities are displayed and discussed in 54 below. 

Experimental background 

Various measurements of drag and shedding frequency for smooth circular cylinders 
in the range lo3 < Re < lo6 are collected in figure 1 .  Some notes on the experiments 
appear in table 1. It goes almost without saying that more reliance should be placed 
on data for cylinders of large aspect ratio (10 or more) in situations of low blockage 
(10 yo or less), low freestream turbulence level (1  Yo or less), and low Mach number 
(0.25 or less). The stars represent values observed during the present experiments, 
as described in $53 and 4 below. Open circles are data from experiments a t  one 
Reynolds number. 

Apparently there is still some uncertainty about the drag and shedding frequency 
for a circular cylinder, in spite of the large number of independent observations. In  
the case of the drag coefficient C,, the present values are reasonably close to the values 
obtained by Bearman, Bursnall & Loftin, Humphries, Kamiya ef al., Miller and 
Polhamus (see table l ) ,  although the agreement does not always extend to the details 
of the mean pressure distribution around the cylinder. I n  the case of the Strouhal 
number St,  the present value of 0.179 a t  Re = 140000 is slightly lower than the 
consensus of other measurements. If any conclusion can be drawn from the experience 
represented by figure 1 ,  it  is that end conditions for the cylinder model are critical. 
The closest approach to two-dimensional mean flow is apparently obtained by making 
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FIQURE 1. Collected experimental data for (a) Strouhal number and ( b )  drag coefficient for low-speed 
flow past a smooth circular cylinder. Data sources are listed in table 1. Stars show results from 
the present research. 

the boundary layers on the endwalls as thin as possible, usually by the use of 
endplates of moderate size. Such a strategy can be effective even for relatively short 
cylinders. 

Several experimenters have recently used digital methods to preserve phase 
information in studies of flow in the near wake of two-dimensional bluff bodies. Davies 
(1976) worked with fixed hot wires in the wake of a D-section body with its flat face 
upstream. The Reynolds number is not stated, but i t  appears 'to be about 25000. 
Phase was measured from successive maxima in the nearly periodic signal from a hot 
wire placed outside the wake. The objective of this experiment was to compare wake 
flows for a fixed body and an oscillating body, rather than to map the wake flow in 
detail. Measurements were made only a t  one station, which was placed well 
downstream ( z / D  = 8) to minimize the problem of large relative flow angles for the 
hot wires. The observed time dependence a t  this single station is converted to  spatial 
dependence to obtain an approximation to the mean-flow pattern which would be 
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seen by an observer moving downstream at the proper phase velocity. The latter was 
inferred from cross-correlation of signals from two probes separated in the x-direction. 

More recently, Owen & Johnson (1980) used laser anemometry to measure vortex 
flow fields in the near wake of a cylinder a t  a high subsonic Mach number ( M ,  = 0.6). 
They used a surface hot film as a phase reference. I n  agreement with the present 
measurements, they found that the area of mean-flow reversal is relatively small, with 
the wake closure point occurring slightly more than one diameter downstream of the 
cylinder centre. However, they found significantly larger values of the normalized 
wake defect velocity a t  comparable values of x/D (for example Aulu, = 0.5 at 
x/d = 4 compared with Au/u, = 0.25 in figure 11 ( a )  for the present measurements). 
A possible reason for the difference is the known tendency of the vortex-formation 
region to increase in length as the Mach number increases in the high subsonic range 
(Dyment, Gryson & Ducruet 1980). The presence of shock waves on the cylinder and 
in the near wake above a critical Mach number of about 0.4 has been thoroughly 
documented by Stack (1941), Ryan (1951), Gowen & Perkins (1953), Thomann (1959), 
Gorecki (1960), Naumann, Morsbach & Kramer (1966), and Dyment et al. (1980). 
Although shock waves were undoubtedly present in the experiment by Owen & 
Johnson, they are not resolved by the measurements a t  constant phase. A related 
effect of Mach number is a 20 Yo increase in C,  a t  M ,  = 0.6 and Re = 1.3 x lo5, with 
a comparable decrease in base pressure (Gowen & Perkins 1953). The drag coefficient 
and base pressure were not measured by Owen & Johnson, and other important 
aspects of the experiment, such as effects of tunnel blockage and effects of statistical 
sampling bias on the LDV data, are not discussed. 

Wlezien & Way (1979) have used a novel thermal-tracer method to study the 
vortex-formation process in the base region of a circular cylinder at Reynolds 
numbers between 5800 and 10400. The results published so far deal mainly with 
technique, and this technique has not yet been fully exploited. 

Finally, Perry & Watmuff (1981) have carried out conditionally averaged flying- 
hot-wire measurements in the three-dimensional wake of an ellipsoid. They concen- 
trated particularly on the effect of 'phase jitter' on the averaging process. The main 
effect is to reduce the measured contribution to the total stress of the periodic part 
of the motion. They also find that in the three-dimensional wake only about 15% 
of the stress is due to the periodic motion as compared to about 50% for the 
two-dimensional case. Effects of phase jitter are important in the present investigation 
and will be discussed in fjs3 and 4. 

The present experiment goes beyond the other experiments just cited by including 
intermittency data and by taking full advantage of the fact that information is 
available simultaneously for two components of the velocity. The resolution of the 
measurements is high enough, and the scatter is low enough, to allow data to be 
differentiated with some confidence. Access to  quantitative data for mean vorticity 
and mean strain rate as functions of position and time leads in sQ4 and 5 of this paper 
to several useful conclusions about the kinematics and dynamics of the flow. 

2. Model and instrumentation 
Cylinder model 

The cylinder model used in the experiment was a 2.97 m length of stainless-steel 
tubing with an outside diameter of 10.14 cm. The tubing was centreless ground and 
lapped to an outside surface finish of about 0.3-1 .O pm ( 1 M O  pin.). Circular endplates 
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Diffuser Test section (side view) View looking downstream 

Microdot probe 1 I Got-static tube 

dial and verniex 

Xarray sensor -- 

Slide assembly- 
vertical traverse i 
9 1.44 cm 

-. --Machined -Isolated BNC and 
motor power jacks angle plate 

FIGURE 2. Configuration of the flying-hot-wire apparatus and cylinder model 
in the GALCIT 10 ft wind tunnel. 

61 cm in diameter were used to isolate the flow over the cylinder from the boundary 
layers on the tunnel walls. 

The inside of the model was honed and fitted with several sealed pistons which 
connected pressure holes in the wall of the cylinder to pressure instrumentation 
outside the tunnel. Two of these pressure holes, located 9.84 cm to either side of centre, 
were closely coupled to internal pressure transducers (Stow Laboratories Pitran 
model PT-L2; active volume 0.07 cm3). One Pitran transducer was used primarily 
to monitor the phase of the vortex-shedding cycle. The other was used briefly to verify 
that shedding was acceptably two-dimensional over a lateral distance of about two 
cylinder diameters. 

Flying hot wire 
A basic problem with hot-wire anemometry in regions of high turbulence level is that 
the instantaneous flow may approach the probe from an awkward direction. A 
conventional X-wire array, having wires mounted a t  45O to the probe axis, will not 
have a unique response if the relative flow angle is allowed to fall outside this range 
of 5 45'. See Tutu & Chevray (1975) for an appreciation of this problem. The strategy 
of the flying-hot-wire technique is to increase the relative velocity component along 
the probe axis, and thus to decrease the relative flow angle, by mounting the hot-wire 
probes on the ends of a pair of whirling arms. One consequence is that rotation of 
the arms in a uniform flow automatically applies a wide range of relative flow angles 
to the X-arrays, making them inherently self-calibrating in pitch. Another consequence 
is that the hot-wire signals are statistically neither stationary nor homogeneous, so 
that the technique is necessarily digital. 

Figure 2 is an assembly drawing of the flying-hot-wire apparatus in the test section 
of the 10 foot wind tunnel at GALCIT (Graduate Aeronautical Laboratories, 
California Institute of Technology). The diameter of the rotor was 151 em. The rotor 
was mounted directly on the shaft of a printed-circuit DC motor (Printed Motors 
model U16M4). The motor case was mounted in one end of a vertical strut which could 
be traversed in the streamwise and vertical directions. 
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The need to maintain closely constant rotor speed in spite of large variations in 
torque was met by development of a phase-lock servo drive. The command input to 
the phase detector originated in a preset counter (in the data-acquisition system) as 
a 200 kHz crystal-controlled pulse train. A series of decade counter stages divided 
the 200kHz frequency by any desired decimal integer from 1 to 999. The feedback 
input to the phase detector was obtained from a 256-tooth precision gear and 
magnetic pickup a t  the rotor hub. The square-wave output of the magnetic pickup 
also controlled the data-sampling process. At each positive-going transition of the 
pickup signal, a burst of twelve samples from twelve analog channels was recorded 
at 200 kHz by the data system. A second magnetic pickup and a single-tooth gear 
on the rotor shaft provided an index pulse once per revolution to ensure synchronization 
of the sampled data with rotor position. The speed range available for the flying- 
hot-wire rotor in still air was from about 50 r.p.m. to about 700 r.p.m. (tip speeds 
from 3.7 to 53 m/s). This still-air range was shortened a t  the upper end when the 
tunnel was running, because the servo power amplifier (Control Systems Research 
model 800PRA) saturated when both torque and torque fluctuation were large. 

An X-array hot-wire probe was mounted in a clamp holder at the end of each arm, 
with the plane of the X in the plane of rotation. Hot-wire signals were carried from 
the rotating probes to the data-acquisition system through a set of mercury slip rings 
(Meridian Laboratory model MSD-12). 

Four channels of constant-temperature anemometry were constructed particularly 
for these experiments. The circuit was based on a design by Perry & Morrison (1971). 
Minor changes were made to accommodate new low-drift amplifiers (Precision 
Monolithics model OP-05). Commercial X-array hot-wire probes were used (Disa 
model 55A38). The wires were platinum-plated tungsten 5 p m  in diameter. The 
nominal overheat ratio was 1.45. The hot-wire signals were digitized and recorded 
directly without being processed by linearizers or other analog signal-conditioning 
equipment. 

All probe calibrations were carried out with the tunnel empty. The operating point 
of the hot-wire anemometers was set with the tunnel off and with the rotor speed 
chosen to give a relative velocity a t  the sensors (encoder frequency 200000/94 = 2128 ; 
tip speed approximately 40 m/s) in the middle of the range expected during the actual 
experiment. An internal square-wave generator was used to optimize the damping 
and frequency response by adjusting offset and inductance. The bandwidth inferred 
from this test was about 20 kHz. 

A more complete description of the flying-hot-wire apparatus, including a thorough 
discussion of probe calibration, can be found in Cantwell (1976) and in Coles, Cantwell 
& Wadcock (1978). 

Intermittency meter 

The conventional definition of intermittency assumes that the motion a t  any point 
in the flow at any instant can be classified unambiguously as either turbulent or 
non-turbulent. I n  particular, i t  is common practice to call the motion turbulent if 
there is appreciable energy a t  high frequencies. I n  the present experiments, because 
of the low sampling frequency, the classification process was carried out by analog 
methods in real time. Continuous analog signals from the two wires of one X-array 
were separately differentiated, added, bandpass filtered, rectified, and fed into a 
comparator with an adjustable threshold level. The irregular output pulse train was 
fed to a retriggerable one-shot whose output remained high whenever the time 
interval between input pulses was less than the pulse width of the one-shot. The 



Entrainment and transport in the near udce of a circular cylinder 33 1 

output of the intermittency circuit was a TTL-compatible digital signal which was 
recorded as the least significant bit of each data sample. The circuit parameters (pass 
band, threshold level, one-shot pulse width) were adjusted until the intermittency 
output consistently confirmed a subjective judgment that turbulence was intermit- 
tently present or absent in a wide variety of analog hot-wire signals typical of the 
actual experiment. 

Vortex tracker 

Some means was required to measure and record the phase of vortex shedding from 
the cylinder. The somewhat irregular shedding frequency (about 37 Hz) was low 
compared with the sampling frequency (200000/172 = 1163 Hz), so that direct 
recording of the shedding signal was feasible. However, recovery of phase information 
during later data processing would then require detailed examination of the phase 
signal for many millions of shedding cycles. To avoid this very substantial computing 
task, the shedding phase was also computed by analog methods in real time. The main 
Pitran pressure signal was bandpass filtered and tracked by a phase-lock loop whose 
centre frequency was set to the mean vortex-shedding frequency. A linear ramp signal 
synchronized with the vortex shedding was generated by amplifying the square-wave 
output of the phase-lock loop and using the positive edge to discharge the feedback 
capacitor of an analog integrator having a constant-voltage input. This ramp signal 
was sampled and recorded along with the hot-wire signals. 

Pressure, temperature 

Differential pressures were measured by two electronic manometers (Barocel model 
1014A/511) having a range of 0-100 mmHg and linearity to better than 0.5 "/o over 
a wide dynamic range. Tunnel dynamic pressure was monitored using a Pitot-static 
tube fixed midway along the ceiling of the test section. Tunnel temperature was 
measured by an electronic thermometer (National model LX5606) mounted on the 
sidewall of the test section. All of these quantities were recorded by the data system 
for later use in processing of hot-wire signals. 

3. The experiment 
Choice of Reynolds number 

The main objective of the present research was to study the processes of vortex 
formation and vortex shedding in the turbulent near wake of a circular cylinder. The 
complexity of the experiment meant that  detailed measurements would be made only 
a t  a single Reynolds number. This Reynolds number should be large enough to ensure 
a fully turbulent near wake, but small enough to ensure a laminar separation. This 
requirement anticipates the use of the results as a test case for advanced computation 
codes.? The model design should also be such as to avoid, so far as possible, 
deleterious effects due to the various factors (aspect ratio, blockage, roughness, etc.) 
which are known to contribute to the scatter in figure 1 .  

Figure 3 shows some preliminary measurements of mean surface-pressure distrib- 

t The main experimental results have been recorded on magnetic tape as part of the AFOSR- 
Stanford Data Library created for the 1980-81 AFOSR-HTTM-Stanford Conference on Complex 
Turbulent Flows. The quantities recorded on tape include the non-steady mean and global mean 
velocities and Reynolds stresses as well as global mean surface pressure. Further information about 
the data library can be found in Kline, Cantwell 8: Lilley (1981). 
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FIGURE 3. Model surface-pressure distribution measured a t  various Reynolds numbers. Flow 
represented by solid symbols was chosen for detailed study. 

Cylinder diameter d = 10.137 ern 
Nominal arm radius R = 75.67 cm 
Dynamic pressure for wake data runs Q, = 1.955 mmHg nominally 5 lb/ft2 
Freestream speed u, = 2120+ 10 cm/s 
Arm-tip speed for wake data runs wR = 2159.56 cm/s 
Freestream temperature T, = 24 k 2 O C  

Kinematic viscosity v = 0.1535 cm2/s 
Reynolds number Re = u, d / v E  1.10000 
Freestream turbulence level ; (u’’))?/u, < 0.006 
Drag coefficient C, = 1.237 
Base pressure coefficient (180O); c,, = - 1.21 
Shedding period T = 26.65 ms 
Strouhal number St = 0.179 

TABLE 2. List of experimental parameters 

ution around the cylinder at various Reynolds numbers from 70000 to 340000 (these 
are the measurements represented by the stars in figure 1 ) .  The surface pressure was 
observed over one side of the model only. No correction has been made for blockage 
effects. The particular pressure distribution shown by solid symbols in figure 3 (and 
repeated as a dashed line for comparison with the other distributions) corresponds 
to the operating condition a t  Re = 140000 finally chosen for the detailed measurements 
in the near wake. Table 2 gives a list of experimental parameters. 

An important consideration in the choice of cylinder Reynolds number was the 
regularity of the vortex-shedding process. Tunnel speed was varied over a wide range, 
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FIGURE 4. Pitran surface pressure signals a t  various angles away from the forward stagnation point 
(0'). (a )  Pitran tap a t  20'; horizontal 100 ms/div., vertical 0.02 V/div. ( b )  Pitran tap at 30'; 
horizontal 100 ms/div., vertical 0.02 V/div. (c) Pitran tap a t  65'; horizontal 100 ms/div., vertical 
0.02 V/div. ( b )  Pitran tap a t  150': horizontal 200 ms/div., vertical 0.05 V/div. 

and the Pitran sensor was positioned at various angles to  the flow. Typical pressure 
signals are shown in figure 4. Throughout the range of conditions observed, the 
pressure signal was characterized by the same kind of amplitude and frequency 
modulation which has been reported by other investigators (see e.g. Ferguson, 
Gerrard, Humphries and McGregor in table 1). For the main wake measurements the 
Pitran sensor was positioned 65' away from the forward stagnation point. Low- 
frequency modulation and high-frequency noise were removed with a bandpass filter 
before the signal was put into the vortex tracker described in $2. 

Data base 

Figure 5 shows an oscilloscope record of typical hot-wire traces from the two wires 
of one X-array during one full revolution of the rotor arm. Hot-wire data were 
recorded only for the probe which was currently advancing into the stream ; i.e. for 
the left half of the oscilloscope photograph, or for the upper half of the probe 
trajectory in figure 5 .  

With two wire arrays working, the flying arm made 16384 revolutions for each 
position of the rotor hub (with one wire array working, i t  made 24576 revolutions), 
yielding for each probe a population of nominally 1024 samples (1536 samples) for 
each frame and for each of the 16 phase intervals of the shedding cycle. Of the 128 
frames of data in the upper half-revolution, 50 frames (distributed partly a t  the 
beginning of the arc, partly a t  the end) were normally discarded as being outside the 
region of interest. Data were obtained with the rotor hub located a t  44 different 
positions. The useful data base amounted to about 210000000 words of hot-wire data. 
Also recorded were about 70000000 words of phase information and about 60000000 
words of hot-wire calibration data, pressure data, and miscellaneous information. All 
of these data were fully processed. 
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FIGIJRE 5 .  Typical hot-wire signals from the two wires of a n  X-array during one full revolution 
of the flying-hot-wire rotor. Data  were recorded only for frames 1-1 28 of the upper half-revolution. 

Dispersion 

Proper assignment of phase is important because the average vortex moves (at 
x l d  = 3.75, say) about 0.26d between phases (see $4 and table 3 below). The method 
used to  compute phase from ramp data is illustrated in figure 6. Each cycle of the 
linear ramp signal was extrapolated to zero amplitude to  define an origin for the cycle. 
The calculation was carried to an accuracy of one octal place (i.e. t of the period 
between frames). The interval from one ramp origin to the next was then divided 
into 16 subintervals, to  the same accuracy, and an integer phase 1,2 ,  . . . , 15, 16 was 
assigned to each frame of data within the ramp cycle. In effect, the clock which 
recorded time during the experiment was reset to run a t  a slightly different constant 
rate during each vortex-shedding cycle. 

The probability density for ramp intervals determined in this way is shown in 
figure 7 ( a ) .  Thc observed dispersion in ramp interval is of one piece with the 
low-frequency modulation shown in figure 4. In  view of the possibility that minor 
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FIGURE 6. Sketch showing how ramp da ta  were used to assign phase 
information to the hot-wire data. 

editing of the data might lead to major improvement in the description of the flow, 
careful attention was paid to the problem of dispersion before the hot-wire data were 
finally processed. To keep this question separate from the question of probe 
calibration, the main variable considered was the mean intermittency ( y ) ,  defined 
as the fraction of samples in a given population which had been classified as turbulent 
by the circuit described in $ 2  (the criterion was the presence or absence of appreciable 
energy a t  scales of a few millimetres). It was found that the measured value of ( y )  
reached unity only in the region of intense turbulence near the base of the cylinder. 
Peak values near the vortex centres farther downstream were in the range from 0.8 
to 0.9 (cf. figures 8 and 23 below). On the premise that this behaviour was caused by 
dispersion rather than by inhomogeneities in turbulent energy within individual 
vortices, various editing schemes were tried in an effort to increase the peak values. 

One scheme was to discard data corresponding to the tails of the distribution in 
figure 7 (a).  Figure 7 (b )  shows the result for one relatively busy probe arc. Data were 
accepted only if several successive ramp intervals fell within a specified window 
centred on the mean interval. The phase was kept fixed in the sense that it was 
required to have a particular value for a particular frame near the cylinder. The array 
of binary digits a t  the top of figure 7 ( b )  shows the raw intermittency observed during 
several (non-consecutive) revolutions for which this phase condition was met but no 
other restriction was put on the data. As the width of the window was decreased, 
the dispersion was decreased (i.e. the excursions in ( y )  became more conspicuous). 
However, there was no substantial improvement until the population was reduced to  
a very small fraction of its original size. Whatever flow is being described by the 
remaining data, i t  is not the flow which is observed in nature. Similar lack of 
improvement was obtained with other schemes, including one in which the phase for 
each frame was determined from the ramp signal at an earlier time such that a vortex 
formed a t  that time would (on the average) just have reached the probe position at  
the moment when probe data were recorded. 

Our final conclusion was that the observed dispersion is irreducible. The shedding 
process itself does not define the lowest frequency or the largest scale of the actual 
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FIGURE 7 .  Effect of editing on dispersion. (a )  Probability density for ramp intervals. ( b )  Mean 
intermittency distribution along one arc a t  phase 16. Closest approach of probe to  cylinder is 
at  frame 83. Nominal population for each frame is 1024. Unedited raw intermittency data are also 
shown for several revolutions. -, All data retained; --, 78% retained; -.-, 30 yo retained; -. .-, 
5 0.6 retained. 

motion, a t  least for a stationary cylinder. Different vortices follow different paths 
a t  different speeds, probably with considerable three-dimensionality a t  the scale of 
the variable (ui) which appears in (5). If variations in individual vortex trajectories 
in space and time are not closely correlated with pressure or velocity events occurring 
in the same plane very close to the cylinder, there is little point in attempting to reduce 
dispersion by making local adjustments to the clock of the experiment. 

In  the end, no data were discarded. Phase was assigned according to the local state 
of the Pitran pressure ramp a t  the time of each sample. 

Rotor iitlerference 

I n  the present experiment, the rotor tip speed and the freestream speed were very 
nearly equal. Fluid in the freestream travelled more than 2 metres through the test 
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FIGURE 8. One frame from an animated film showing (7 )  as a function of x ,  y and phase. 

section during each half-revolution of the rotor. It therefore seemed a reasonable 
presumption that effects of rotor interference might be small. 

The most extensive test for interference was again made using intermittency 
information. Another quite different issue was explored a t  the same time; namely, 
the issue of data presentation. The results of the present experiment are capable of 
generating hundreds of plots depicting various correlations for periodic and for 
random fluctuations for the 17 phases of the motion (if the global mean is included). 
A first attack on the presentation problem produced an animated film showing the 
three-dimensional intermittency surface ( y )  as a function of x ,  y and t .  A frame from 
this film is reproduced here as figure 8. This method of data presentation was very 
quickly judged to be glamorous, expensive and uninformative. Simple contour plots 
are a t  least as useful, especially because they lend themselves to easy comparison of 
different variables by superposition of figures. 

When figure 8 was being constructed, small but definite discrepancies in ( y )  were 
noticed in certain regions. The intermittency surface appeared to  be slightly different 
for different directions of probe motion. The correction for exit lag described by Coles 
et al. (1978, $4.3) was applied to the data and was found to be completely effective 
in removing the discrepancies. Because no evidence of any systematic disturbance 
was found in any of the other data of the experiment, our conclusion is that rotor 
interference was in fact negligible.? 

Data processing 
The two main operations during data reduction for this experiment were sorting of 
the data into populations for a given probe, arc, frame, and phase, and inversion of 
the hot-wire data to obtain sampled velocity vectors. These operations were not 
completely independent. Substitution of a linear ramp signal for the oscillating 
surface pressure reduced the assignment of phase to a simple calculation using binary 

t In an experiment involving measurements with the same flying-hot-wire apparatus in the wake 
of a stalled airfoil, a different and unexpected kind of rotor interference was encountered. This 
problem is described and discussed by Coles & Wadcock (1979). 
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FIGURE 9. Measured global niean and fluctuating surface pressure a t  a Reynolds number of 140000. 
Vertical lines connect largest and smallest instantaneous pressures observed a t  each point during 
several thousand shedding cycles. 

arithmetic. If the hot-wire calibration had been free of drift, the inversion operation 
from voltage to velocity would have been almost trivial. Each voltage pair for a given 
probe could be assigned to some cell in a finite discrete master array of (say 250 x 250 
cells. Each population corresponding to a given arc, frame and phase would then 
generate its own two-dimensional histogram in some region of the master array. The 
voltage pair for each of the 62500 cells in the array would have to be inverted only 
once. Velocity means and moments for the various populations would then follow 
on weighting and summing the velocity values for the various cells. The saving in 
computer time, compared with the prospect of 105000000 separate inversions, would 
be substantial. In  practice, essentially this scheme was used, except that drift in the 
hot-wire calibrations required most of the master array to be inverted for each of 
the 14 data arcs, and the number of inversions actually required was closer to 
2 000000. This processing is described in considerable detail elsewhere (Cantwell 
1976). 

4. Presentation of results 
Global m a n  j o t u  

Figure 9 shows the result of a careful second measurement of the conventional mean 
surface-pressure distribution around the cylinder a t  Re = 1.10000. The open symbols 
denote the mean pressure a t  each p0int.t The drag coefficient is 1.237 and the 

t The pressure coefficients C', = 2(p--pK,)/pu2, in figures 3 and 9 and throughout this paper are 
referred to  static and dynamic pressures indicated by the ceiling-mounted Pitot-static tube. A small 
hut consistent difference in total pressure was observed between values a t  this position and a t  the 
model position. For example, the measured value of C, a t  the forward stagnation point of the 
cylinder at  Re = 140000 was 1.019, not 1.000. This discrepancy was checked by interchanging the 
two pressure transducers and found to be real. The discrepancy is presumably due to non-uniformity 
in total pressure in the upstream flow: i.e. i t  is inherent in the low-speed operating chararteristirs 
of the 10 foot tunnel with the cylinder model installed. 
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FIGURE 10. Velocity vectors for the global mean flow as measured at equally spaced points along 
the three families of flying-hot-wire arcs. All data have been reflected in the plane of symmetry. 

base-pressure coefficient is - 1.21. The latter value varied less than f 0.02 over the 
central 20 diameters of the cylinder span (length/diameter = 27/11. The mean 
separation position (here identified with the inflection point for the mean pressure 
coefficient) is about 77' away from the forward stagnation point. The vertical lines 
in figure 9 connect the largest and smallest instantaneous pressures ever observed 
during several thousand shedding cycles. Note that the pressure excursions are not 
arbitrarily large, but appear to be bounded above and below by envelopes having 
the same general shape as the distribution of mean pressure. The instantaneous 
base-pressure coefficient can be as high as -0.2 or as low as -3.5. 

Figure 10 shows the global mean velocity in the near wake as obtained from the 
flying-hot-wire data. There are three families of arcs in the figure, each produced by 
traversing the rotor hub vertically while keeping the horizontal position fixed. Here 
and in later figures the spatial redundancy of the data has been fully exploited by 
reflecting the probe arcs in the plane of symmetry. 

The most striking feature of figure 10 is the small size of the mean separation bubble. 
The mean closure point appears to be slightly more than half a diameter downstream 
of the rear stagnation point. There are very few data points in and near the zone 
of recirculating mean flow, and some of these have had to be discarded because an 
appreciable fraction of the relative velocity vectors fell outside the practically useful 
angular range of the hot-wire array ( & 30') for certain phases of the shedding cycle, 
in spite of the strong velocity bias. It is relevant here that measurements of the mean 
flow are more sensitive than measurements of fluctuations to errors arising from rotor 
interference or from the transformation from relative to absolute velocity. Rotor 
interference, if present, should appear in figure 10 in the form of discrepancies in flow 
direction where arcs a t  widely different angles intersect each other. This is not the 
case. The occasional small discrepancies in flow direction which are observed are 
probably due primarily to drift and other inaccuracies in the hot-wire calibrations. 

Another feature of figure 10 is the rapid relaxation of the mean-velocity defect in 
the plane of symmetry. The global mean velocity in this plane is shown in figure 11 (a) .  
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FIGURE 1 I .  Typical mean-flow measurements. (a)  Global mean centreline velocity as 
interpolated from the three overlapping sets of arcs in figure 10 after averaging data from two wire 
sets. ( b )  Global mean velocity U/u, at x/d = 1.0 as measured by wire set 1 (0) and wire set 2 (A). 
( c )  Global mean shearing stress (u'v')/u2, due t o  random turbulence at x/d = 1.0 as measured by 
wire set 1 (0) and wire set 2 (A). 

The rapid downstream acceleration of the mean flow in the face of an upstream 
pressure force is evidence of very powerful mixing processes in the near wake. 

Mean flow at constant phase 

Figures 12-19 show the velocity field a t  eight phases during one half of the shedding 
cycle. The second half of the shedding cycle simply repeats the data in these eight 
figures after reflection of each figure in the plane of symmetry. Only one family of 
arcs, the one with the most uniform hot-wire calibration and the least difficulty with 
relative flow angle, is used to  construct these figures. As in figure 10, this family is 
reflected in the plane of symmetry in order to produce a coherent picture from data 
which were taken mostly below the wake centerline. Direct and reflected data are 
from the same run but are 180° apart in phase, so that  the sign of the v-velocity is 
reversed for the reflected data. In  general, the data show excellent agreement 
everywhere in the common region. 

Figures 12(a)-19(a) represent the mean velocity field as i t  would appear to an 
observer moving downstream a t  a velocity of 0 . 7 5 5 ~ ~ .  This particular velocity 
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FIQURE 12. The velocity field at constant phase (1,9) as viewed from a frame of reference (a)  moving 
downstream a t  O.755um, (b )  fixed with respect to the cylinder. 

matches the measured streamwise component of vortex celerity (see table 3) a t  the 
particular station x /d  = 3.75. I n  each figure the cylinder is moving to the left with 
this same velocity, along with much of the fluid in the base region. The moving 
observer is displaced between phases by a distance Ax = 0.755um(T/16), where 
T = l / f  is the shedding period. With f d / u m  = 0.179, the distance in question is 
Ax = 0.264d per phase, or 4.22d per cycle. Figures 12(a)-19(a) may therefore be 
interpreted as a sequence of streak photographs taken by a series of moving observers 
(positioned 0.264d apart) as each passes the particular station xld = 3.75. The length 
of the arrows is scaled to correspond to  an exposure time of about t of the interval 
between phases. 

The outstanding kinematical feature associated with entrainment of freestream 
fluid by the shedding vortices is the formation and evolution of a saddle point in the 
fluid as seen by an observer moving with the eddies. Evidence of the saddle begins 
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FIGURE 13. The velocity field a t  constant phase (2,lO) as viewed from a frame of reference 
(a) moving downstream at O.755um, ( b )  fixed with respect to the cylinder. 

tjo appear in figure 13(a) (x/d = 1.3, y / d  = -0.6). The saddle continues to develop 
and by figure 18(a)  (phase 7,15) has become quite well defined ( x / d  = 1.7, 
y / d  = -0.8). The converging separatrix of the saddle brings in freestream fluid from 
above and below the cylinder. The diverging separatrix carnies this fluid downstream 
into the vortex with centre a t  s / d  = 3.13, where a process of fluid rollup is occurring, 
and upstream (referred to the moving observer) into an interaction zone very near 
the base of the cylinder. 

Figures 12 (b)-19 ( b )  represent the same mean-velocity field a t  constant phase in 
a reference frame fixed with respect to the cylinder. The large flow angles, particularly 
near the plane of symmetry, confirm that a fixed hot-wire X-array or a conventional 
Pitot-static tube would be a very unreliable instrument for this flow. 

Figures 12-19 are derived from measurements made on one family of 14 arcs which 
cover only part of the flow field. I n  subsequent processing, all three families of arcs 



Entrainment and transport in the near wake of a circular cylinder 

FIGURE 14. The velocity field a t  constant phase ( 3 , l l )  as viewed from a frame of reference 
(a)  moving downstream at O.755um, ( b )  fixed with respect to the cylinder. 

were used. The data for each variable (without regard to family of origin) were linearly 
interpolated in x and then in y to obtain values on a grid with nodes spaced 0. Id apart. 
The data from the two probes were then averaged. Disagreement between the two 
values for (say) the magnitude of the mean velocity a t  constant phase was usually 
less than 0.03um, except in the base region, where i t  could be as much as 0 . 0 6 ~ ~ .  
Figures 11 ( b ) ,  ( c )  show typical comparisons for global mean velocity and turbulent 
shearing stress as measured by the two probes. 

At this point the problem of presentation of results becomes most severe. In  
addition to data for intermittency, velocity and vorticity, data are available for 
contributions by the periodic and random motions to each Reynolds stress and to  
the turbulent energy production for 9 phases (including the global mean) - 90 plots 
in all! Therefore we have chosen to limit the discussion to  the results for the mean 
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FIGURE 15. The velocity field at constant phase (4,12) as viewed from a frame of reference 
(a) moving downstream at O.755um, ( b )  fixed with respect to the cylinder. 

flow and the flow at one representative phase of the motion (phase 7,15) .  In all cases 
results are made dimensionless using the freestream velocity and the cylinder di- 
ameter, as appropriate, although the normalizing factors may not always be stated 
explicitly. 

Vortex motion 

Interpolated and averaged results for the velocity field at  phase (7 ,15)  are shown in 
figure 20. If the instantaneous flow patterns in this figure and in corresponding figures 
for other phases are taken at  face value, the position of the shed vortices is established 
for each phase of the motion. However, these patterns should not be taken at  face 
value. The saddles and centres appear at  points where the vectors in figures 12 (b)-20 ( b )  
happen to be horizontal and to have the particular magnitude 0 . 7 5 5 ~ ~ .  If some other 
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FIGURE 16. The velocity field at constant phase (5,13) as viewed from a frame of reference 
(a )  moving downstream a t  0.755u,, (6) fixed with respect to the cylinder. 

velocity for the moving observer had been chosen, the centres would be displaced 
to other locations in the flow.7 

An unambiguous way to find the vortices is to examine the mean vorticity a t  
constant phase, (0 = a<v)/ax-a(u)/ay. Taking the curl of the velocity field in 
figure 20(a) or ( b )  leads to the result for vorticity shown (after one stage of smoothing) 

t We did not include a figure showing the instantaneous streamlines in our flow as they would 
appear to an observer moving at u, ; i.e., as they would be photographed by a stationary camera 
viewing the wake of a towed body. That the vortices would then appear to lie farther from the 
plane of symmetry was argued long ago by Hooker (1936). A simple argument emerges from figure 
20 (b ) ,  which shows the field u(z, y), v(z, y) at constant t as seen in the laboratory frame. Given a 
streamwise velocity c for a moving observer, the vortex centres lie at points where v = 0, u = c. 
Given that u increases with increasing distance from the wake centreline, Hooker’s result follows. 
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FIGURE 17. The velocity field at constant phase (6,14) as viewed from a frame of reference 
( a )  moving downstream at O.755um, ( b )  fixed with respect to  the cylinder. 

in figure 21 (b ) .  These data in turn define the vortex circulations and positions through 
the summation formulas 
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FIGURE 18. The velocity field a t  constant phase (7 ,15)  as viewed from a frame of reference 
(a )  moving downstream at 0.755u,, ( b )  fixed with respect to the cylinder. 

where AA = 0.01d2. The summations in each case have been restricted to values of 
l(c) d/u,l greater than 0.03 to  avoid relatively noisy data near the outer edges of 
the vortices, where the vorticity distribution becomes rather flat.$ The coordinates 
of the centroid of vorticity, the celerity of the centroid, and the circulation are listed 
in table 3 and plotted as a function of x / d  in figure 22. The data in parentheses in 
the table are not very meaningful. For phases 13, 14 and 15 the region of strong 
vorticity extends all the way back to the cylinder, without a well-defined neck a t  
which to stop the summations. These were therefore terminated a t  a rather arbitrary 
upstream station which varied from x / d  = 0.5 for phase 13 to x / d  = 1.5 for phase 

$ The calculation was also carried out, where feasible, with the threshold set to zero. While the 
data scatter increased slightly, in no case did the computed values of i?/d differ significantly from 
the values in table 3. Computed values of r / u m  d increased by one or two percent. 

12 FLP 136 
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FIGURE 19. The velocity field at constant phase (8,16) as viewed from a frame of reference 
(a )  moving downstream at 0.755u,, ( b )  fixed with respect t o  the  cylinder. 

15. For phases 11 and 12 the summations had to be terminated a t  the last data station 
(x/d = 8.0), although a significant portion of the vortex obviously lay downstream. 

Also included in table 3 are the coordinates of points of peak vorticity and the value 
of the peak vorticity itself, to the accuracy that these quantities could be determined 
without an elaborate surface-fitting procedure. These data, based on extrema of the 
mean vorticity, have more range but less authority than data based on integral 
properties of the vorticity. I n  particular, the values of peak vorticity may be 
attenuated by dispersion in vortex trajectory. The values of circulation, on the other 
hand, should not be seriously affected by dispersion. 

The vorticity concentrations for phase (7, 15) in figure 21 (b) are entirely compatible 
with intermittency data for the same phase, as shown in figure 23(b) (this is a 
contour-plot version of figure 8). For completeness, the intermittency for the global 
mean flow is included in figure 23(a) .  The fact that  neither ( y )  nor 7 reaches unity 
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except in the base region has already been pointed out in $3. Effects of dispersion 
are evident in the apparent thickening of the mixing layers near the cylinder, both 
in figure 23 for intermittency and in figure 21 for vorticity. 

Several of the results documented in figures 21-23 and table 3 need comment, either 
because they agree or because they disagree with results from other studies which 
have explored the same phenomena. 
(a) After they are shed, our vortices move for some distance essentially parallel 

to and very close to the x-axis, with the centroids of vorticity lying roughly 4.3d apart 
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but lying only about 0.35d from the wake centreline. In this region, therefore, the 
geometric configuration of the vortex street is quite different from the equilibrium 
configuration proposed long ago by von KBrman (1912). The celerity inferred from 
the displacement history of the centroids of vorticity ranges from 0 . 7 2 ~ ~  at xld = 3.6 
to 0 . 8 5 ~ ~  a t  xld = 5.9 (cf. the value 0 . 7 5 5 ~ ~  used in plotting figures 12a-20a). That 
the present results are internally consistent is suggested by the fact that  the measured 
celerities are very close to global mean velocities measured at the same positions (cf. 
the columns c,/u, and C(Z,g) /um in table 3).  Correspondence between these two 
quantities has sometimes been assumed by other investigators in order to infer lateral 
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FIQURE 22. Variation in several vortex parameters (see also table 3):  (a )  trajectory of the vortex 
centroid ; ( b )  streamwise vortex celerity; ( c )  crossflow vortex celerity ; ( d )  vortex circulation. 

vortex position when phase velocity is known, but the two quantities have not 
previously been measured independently. 

( b )  The measured circulation r for a vortex in the near wake never exceeds 44 yo 
of the total circulation r, discharged from one side of the cylinder during a shedding 
cycle. This shed circulation can be estimated by treating the flow as steady and 
symmetric (see e.g. Roshko 1954) : 

where us is the velocity just outside the boundary layer a t  the separation point and 
7 = l/f is the shedding period (two vortices). For the present experiment, 
us = 1.45um, and therefore &/urn d = 5.86. 

Several previous investigators have observed a comparable loss of circulation. If 
arguments which involve the use of formal analytical models for vortex structure are 
set aside, there remain a t  least the experiments by Nielsen (1970) and by Davies 
(1976). Both authors measured circulation as a line integral of velocity around a closed 
contour. Davies used hot wires to measure the velocity, while Nielsen used streak 
photographs of particles in the fluid. In  spite of differences in Reynolds number and 
body shape, as well as some uncertainty about actual vortex position, there is no 
doubt that  typically about half of the available vorticity is lost by cancellation and 
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FIGURE 23. Intermittency: (a )  7, global mean (contour interval 0.10): ( b )  ( y ) ,  mean a t  
constant phase (7 .15)  (contour interval 0.10). 

interference in the base region, where there is intense turbulent mixing of vorticity- 
bearing fluid from the two sides of the cylinder (see figures 24-26 below). Nielsen used 
an ingenious scheme for associating a fixed amount of vorticity with each particle 
in an attempt to account directly for cancellation in the base flow. A more plausible 
accounting may eventually emerge from unsymmetrical thermal-tagging schemes like 
the ones used by Wagner (1976) and by Wlezien & Way (1979). 

(c) The measured circulation in figure 22d reaches a maximum a t  about x ld  = 3.6 
and then decays slowly. We believe that the observed slow decay is real, and that 
i t  must be associated with continuous transfer of mean vorticity from one vortex to 
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the next through the connecting saddles. Even the direction of this transfer is not 
obvious, and the present measurements cannot resolve the question. Our guess is that 
the direction is upstream, because this is the natural sense of the residual transport 
when two continuous vortex sheets are distorted and stretched to produce a 
schematic representation of periodic flow in a wake. 

The observed rate of decay of circulation in figure 22 ( d )  is about 8 "/b per diameter 
of vortex travel a t  x/d near 5. The rate of decay of peak vorticity (c),  (from table 3) 
is about 22% per diameter. The difference is consistent with the observed growth 
in vortex area. Let A be defined for convenience as the area over which ( c )  is greater 
than 10 yo of (c),  for a given vortex. The data show that A increases about 14 yo per 
diameter; the combination I'/(C),A is constant a t  a value of 0.39f0.01 for x/d 
between 3.6 and 6.2. Nielsen's data, which are for a D-shaped body with rounded 
edge forward at a relatively low Reynolds number of 4000, show a maximum value 
of 0.66 for r/& and a decay rate of about 18 % per diameter of travel near x/d = 6. 
Extensive measurements of circulation decay have also been made by Schmidt & 
Tilmann (1972) in the near wake of a circular cylinder. The main instrumentation 
was an ultrasonic beam normal to the plane of the wake, and the measured phase 
shift was assumed to be a measure of the full circulation integral around a contour 
enclosing the body.? The observed decay rate for Reynolds numbers between 4000 
and 30000 is typically about 8 yo per diameter of vortex travel near x/d = 10, in good 
agreement with the present result a t  a higher but still subcritical Reynolds number. 
Unfortunately, Schmidt & Tilmann do not report the two quantities needed to 
evaluate the source strength r from ( l l ) ,  namely the Strouhal number and the 
pressure coefficient at separation. 

Momentum transport 

The basis for the technique of ensemble averaging a t  constant phase is that an 
important component of the flow is periodic in time. In  the context of conventional 
turbulence modelling, the fluctuation away from a global mean S includes a 
contribution s" from the periodic large-scale motion and a contribution sf from local 
random or intrinsic local turbulence. Consider a sample population measured a t  fixed 
position and fixed phase. The mean variables for this population describe the periodic 
motion s", with the vortices frozen in some average position. Fluctuations away from 
the mean come from two sources; there are fluctuations due to small-scale random 
turbulence superimposed on the large-scale vortices, and there are fluctuations due 
to the fact that the large-scale motion is not itself the same for every vortex; there 
is dispersion. For the most part, the subsequent discussion will make no distinction, 
and will refer to all fluctuations s' away from the mean at  constant phase as being 
due to random turbulence. 

From the point of view of the global mean flow described by (6), Reynolds stresses 
are associated with both the periodic and the random motions. These stresses are 
resolved as functions of position and phase by the present measurements. The sign 
convention in what follows is that positive rij represents transport of positive 
i-momentum in the positive j-direction. Hence the algebraic sign of the stresses is 
opposite to the one usually encountered. 

Figures 24 ( a ) ,  25 ( a )  and 26 ( a )  show the three Reynolds stresses 3 E ,  66, u"6 a t  phase 

t The analysis by Schmidt & Tilmann seems to require that short time intervals occur twice per 
shedding cycle when there is no appreciable vorticity of either sign in the fluid traversed by the 
beam. This requirement is not met in the present data for values of x/d less than about 3, and it 
also probably cannot be met a t  large distances downstream of the body. 
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FIGURE 24. Contours for streamwise mean Reynolds normal stress at constant phase (7 ,15):  (a )  
-iiiii/u~ (contour interval 0.00888) ; ( b )  (u'u')/u', (contour interval 0.0157). Dashed line is contour 
( y )  = 0.5. 

(7,15) for the periodic motion. Superposition of these figures on the complete 
intermittency plot in figure 23 ( b )  and on the vorticity plot in figure 21 ( b )  shows that 
the range of the periodic stresses extends well outside the turbulent region. The stress 
patterns show in all cases a strong symmetry with respect to the wake centreline and 
a remarkable indifference to the local presence or absence of turbulence. The motion 
is essentially a local rotation (with respect to the global mean) which generates peaks 
in 32 in figure 2 4 ( a )  above and below each vortex, with ii positive for one peak and 
negative for the other. Similarly, alternating peaks in i76 in figure 25 (a)  correspond 
to positive and negative peaks in 6. The labelled mean-square contours 66 = 0.371, 
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FIGURE 25. Contours for crossflow mean Reynolds normal stress a t  constant phase (7,15) : (a )  272/u2, 
(contour interval 0.0195); (b) <U’U’)/U& (contour interval 0.0143). Dashed line is contour < y )  = 0.5. 

0.334, 0.117 at x/d = 2.1. 4.0, 6.4 in the latter figure imply peak root-mean-square 
values of 6 = 0.609,0.484, 0.342 respectively. Induced vertical velocities in the plane 
of symmetry of the near wake are indeed formidable. 

One finding of the present research is that  the vortex centres in the near wake lie 
unexpectedly close to the plane of symmetry, at least in the first few diameters of 
the wake. One consequence is that  the quantity G.ii in figure 24(a)  is very nearly zero 
on the plane of symmetry throughout the shedding cycle, and therefore for the global 
mean flow as well (cf. in figure 27a) .  Given a signal from a single fixed hot wire 
in the plane of symmetry, the component of this signal at. twice the Strouhal 
frequency would have to come not from the %component but from rectification of 
t,he %component associated with deep incursions of freestream fluid. 
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FIGURE 26. Contours for mean Reynolds shearing stress a t  constant phase (7 .15):  (a )  .iie/u$ 
(contour interval 0.008 16); (b )  <u’v’)/u~, (contour interval 0.00760). Dashed line is contour 
( y )  = 0.5. 

Figure 24 ( b )  shows the random streamwise fluctuations (u’u‘) at phase (7 ,15) .  The 
figure shows a series of peaks corresponding to the vortex centres with connecting 
ridges in between them. Note that the fluctuation levels due to the random turbulence 
are appreciably larger than the fluctuation levels due to large-scale periodic motions ; 
i t  is understandable that the periodic component might not be very conspicuous in 
an unprocessed signal from a stationary probe. Figure 25 ( b )  shows (v’v’) behaving 
in much the same way as (u’u’) with a somewhat larger amplitude and with the same 
peaks and ridges. 

Figures 24 and 25 contain some indirect evidence that phase jitter arising from 

Entrainment and transport in the near wake of a circular cylinder 
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irregularity in the vortex shedding has not seriously affected the measurement of 
Reynolds stresses due to  random turbulence. If such effects were important, one 
might expect to see local maxima in the random stresses a t  places where large 
gradients in .ii.ii and 176 occur. These would be particularly evident outside the 
boundary ( y )  = 0.5, where the random stresses would be expected to be small. For 
example, a t  x / d  = 1.5, y / d  = 1.0 in figure 24(b) ,  the quantity (u‘u’) shows no 
evidence of the large gradient in CC which appears a t  the same location in figure 24 ( a ) .  
We conclude that the technique used for averaging the flow a t  constant phase was 
fairly effective in separating the two phenomena. 

Figure 26 shows the two contributions to the Reynolds shearing stress. The stress 
associated with the periodic motion in figure 26 (a)  exhibits consistent antisymmetry 
about the wake centreline; regions of strong x-momentum flux toward the wake 
centreline are separated by smaller regions of weaker x-momentum flux away from 
the centreline. The most interesting feature of figure 26 ( a )  is the relatively large stress 
associated with deep incursions of freestream fluid into the regions between the 
vortices. In  fact, the global averages of all three stress components must contain 
significant contributions from periodic motions of freestream fluid (cf. figures 27-29). 

The contribution to the shearing stress by the random turbulence is shown in figure 
26(b) .  As in the previous two figures, the stress levels are comparable to  the stresses 
associated with the large-scale periodic motions. However, there is one important 
difference. Whereas the normal stresses due to  the random turbulence have a 
maximum near each vortex centre, the shearing stress due to the random turbulence has 
an extreme value near the saddle between the vortices. This conclusion can be readily 
verified by superposing figures 26 ( b )  and 20 (a) .  The sign of the shearing stress is such 
as to produce a rapid flux of x-momentum away from the freestream and toward 
the interior of the turbulent region. 

The data displayed in figures 2 4 ( b ) ,  25(b)  and 26(b)  can be used to compute the 
correlation coefficient R for the random turbulence, where by definition 

(u’v’)  
(u’u’)$ (v‘2,’)B . R =  

The value obtained at the vortex centre located near . f / d  = 3.13 is R = -0.08, 
compared with R = -0.50 a t  the saddle just above it. For the centre and saddle near 
z / d  = 5.6, the corresponding values of R are 0.22 and 0.46 respectively. It is clear 
that the random turbulence is strongly coupled to the strain and vorticity fields 
associated with the large eddies. 

Globally averaged Reynolds stresses for the periodic and random components of 
the motion are shown in figures 27,28 and 29. According to (6), the stresses of interest 
in turbulence modelling (given that the flow is treated as statistically stationary) are 
obtained by adding the two components ( a )  and (b)  in each figure. The two 
components are themselves an average over one shedding cycle of measurements like 
those in figures 24, 25 and 26. 

I n  figure 27 both components of the streamwise normal stress exhibit double peaks 
up to the end of the vortex-formation region, but thereafter the random turbulence 
exhibits only a single peak. The component due to the large-scale periodic motion 
remains bimodal throughout the near wake and makes virtually no contribution on 
the centreline. The two components of cross-stream normal stress are shown in figure 
28. The similarity between figures 28a and (b)  is remarkable in view of the complete 
dissimilarity between the motions which produce the stresses (cf. figures 25a,  b) .  The 
two components of the globally averaged shearing stress are shown in figure 29. 
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FIGURE 27. Contours forglobal mean streamwise Reynolds normal stress: (a)  s / u &  (contour 
interval 0.00888); (6) ( U ' ~ ) / U ' ,  (contour interval 0.0157). The sum of (a)  and (6) yields the total 
Reynolds stress. 

Again, the similarities between figures 29(a) and ( b )  are remarkable in view of the 
dissimilarities between figures 26 (a )  and ( b ) .  

Both components of all three globally averaged stresses reach their extreme values 
near the end of the vortex formation region, a t  roughly x/d = 1 .0-1.5, and then decay 
rapidly with increasing values of x. The large stresses inside the formation region 
account for the small size of the mean separation bubble and the rapid decay of the 
wake defect velocity. For example, if we add together the two components of the 
shearing stress in figure 29 at  xld = 1.1,  y l d  = -0.5, we obtain %+(u'v') = 0.12, 
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a value roughly one order of magnitude larger than the maximum shearing stress in 
a turbulent plane mixing layer. 

5.  Discussion 
Topology and entrainment 

Several authors have recently considered the problem of defining the topology of the 
near wake in plane flow. They include Peake & Tobak (1980), whose figure 30 refers 
to an analogous steady flow downstream of a slender body a t  angle of attack, Coles 
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(1981) and Perry, Chong & Lim (1982). For the case of laminar flow, some valuable 
flow visualization is also available in the work of Zdravkovich (1969) and Matsui 
(198 1). 

Our own contribution to the subject is presented in figure 30, in which the eight 
sketches are intended to correspond roughly to  the eight phases of our experimental 
data. The material used to develop the figure includes figure 20 (a) for mean velocity, 
figure 21(b) for mean vorticity, and figure 23(b) for intermittency, together with 
similar figures for other phases. We were also glad to have the early measurements 
by Drescher (1956) of the pressure distribution at constant phase on a circular 
cylinder a t  subcritical Reynolds number. 

FIGURE 29. Contours for global mean Reynolds shearing stress. (a )  %/u& (contour interval 0.00816) ; 
(6) (u'e,')/u& (contour interval 0.00760). The sum of (a )  and (6) yields the total Reynolds stress. 
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FIGURE 30. Conjecture for topology of material lines in turbulent vortex formation and shedding 
from a circular cylinder. Phase is assigned to correspond approximately to phase of experimental 
data in this paper. 

We believe that figure 30 correctly describes the topology of material lines in the 
near wake, although liberties have been taken with respect to growth rate, placement 
of the separation points on the body, and other matters. Except for effects of 
dispersion, the qualitative sense of figure 30 is the same for laminar and turbulent 
flow ; the future of each fluid element in the flow pattern is determined (say) by the 
time and place where it encounters the plane x = 0. If a fluid element is not allowed 
to cross either of the adjacent separatrices, i t  must inevitably be incorporated into a 
specific vortex a t  some later time. On the other hand, fluid elements have obviously 
been allowed to cross separatrices in the base region, where the area of the separation 
bubble attached to  the cylinder is shown increasing with time (note also that it is 
oscillation of the separatrices which ensures that a single smoke-labelled streakline 
can delineate the entire flow pattern, as in Zdravkovich’s photographs). Consequently, 
figure 30 should not be viewed as a respresentation of particle paths in the real 
non-steady flow a t  any instant. The figure is an abstraction, a vision, a cartoon. In  
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plane flow, singularities defined in terms of mean particle paths are of two kinds, 
centres and saddles. Both are moving stagnation points which have definite positions 
in the flow pattern at each instant. The change of position with time defines the 
celerity. Given the demonstration in figures 12-19 that bhe topology of the nonsteady 
mean flow cannot be perceived correctly except by an observer moving at this 
celerity, it is a fundamental difficulty in the case of the near wake that celerity is 
a vector and that it depends on position.? At least wit'hin the present' state of thc 
art  in Lagrangian descriptions of non-steady flows, there is no way to take into 
account simultaneously the acceleration of the singularities away from the base 
region, the small component of celerity normal to the main flow, and t'he distortion 
of the flow pattern due to entrainment and growth. 

Nevertheless, we believe, and w e  have tried to suggest inJigure 30, that the dominant 
topological feature of the near wake i s  the formation and etiolution. of sa,ddle points in 
the flow pattern and that the saddles are crucial to a n y  discussion of turbulence production 
and entrainment. 

Other variables than instantaneous mean streamlines can also be useful for 
determining topology. For example, centres, being concentrat'ions of mean vorticity, 
can be expected to remain closely associated with the same elements of fluid. Given 
appropriate measurements a t  constant phase, the centres in figure 20 ( a )  might also 
be detected in terms of 

(a )  a peak in the mean vorticity (see figure 21 b )  ; 
(b )  a peak in the intermittency (see figure 2 3 b ) ;  
( c )  a peak in energy for the random turbulence (see figures 24b and 2 5 b ) :  
( d )  a saddle in either the periodic or random Reynolds shearing stress (see figures 

26a and b) .  
Saddles, on the other hand, need not remain closely associated with the same elements 
of fluid. They can be detected in terms of 

(e) a zero in the mean vorticity with appreciable intermittency (see figure 21 b )  : 
(f) a saddle (probably traceable to dispersion) in the intermittency (see figure 23 h )  ; 
(9)  a peak in the random turbulence production (see figure 31 6 ) .  

Note the important role played in five of these seven guidelines by the intermitt'encp, 
which is often not measured, or by spatial derivatives of the mean velocity, which 
are required in order to infer vorticity or rate of turbulence production. Probably 
the least useful guideline is ( d )  or 0, and the most useful is ( a ) ,  ( c )  or (9).  depending 
on circumstances (cf. Hussain 1980, 1981). We will argue below that the association 
between saddle points and turbulence production is so strong that i t  seems to apply 
even for the global mean flow. 

A very rough estimate of entrainment velocity can be made on the basis of table 3. 
Near x/d = 3 or 4, the area of a vortex is about 4d2. As the vortex moves one 
cylinder diameter downstream, this area increases by about 14%. If the vortex 

In the absence of a global view, it may still be possible to take a local view. If the position 
of a given centre or saddle is known or even guessed as a function of time, its celerity can be 
calculated. The position a t  each instant can then be verified by an observer moving with t.his 
celerity. We think (although we have not proved) that an iteration scheme for closing this loop 
is feasible and that it would be convergent. For example, an observer moving a t  the velocity of 
the freestream in our flow would certainly be able to measure a t  least the streamwise separation 
distance A between vortices of like kind. This separation distance and the shedding frequencyf then 
define a phase velocity c = Afas a better choice of velocity for the observer. As a further example, 
note that the streamline pattern in figure 20 ( a )  is a t  least qualitatively compatible with the vortivity 
distribution in figure 21 ( b )  a t  the same scale and the same phase, even in t,he base region where 
the observer in figure 20(a )  is moving a t  quite the wrong velocit'p. 
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cross-section were circular and the increase in area were due to a uniformly distributed 
inflow, the required inflow velocity would be about 6 yo of u,. The peripheral velocity 
of the same vortex can be estimated from figures 24 ( a )  and 25 ( a )  to be of the order 
of 25-50 yo of u,. However, according to the evidence in figure 20 (a ) ,  the entrainment 
velocity is demonstrably not uniform over the boundary of a vortex. Near x /d  = 3.75, 
for example, the velocity of the observer is nearly the same as the celerity of the flow 
pattern, and the pattern is nearly steady. On the downstream side of the vortex 
centred a t  about x/d = 3.13, the mean-velocity vectors are nearly parallel to the mean 
interface defined by tho condition ( y )  = 0.5. It is a reasonable inference that 
entrainment along this trailing interface is small. I n  fact, this inference is probably 
valid along the lower periphery of the vortex almost as far upstream as the saddle 
at (x/d, y/d) = (1 .7 ,  -0.7).t What is left, then, is massive entrainment at upstream- 
facing interfaces. 

Between any two adjacent vortices, freestream fluid is induced to flow toward and 
even across the wake centreline. During this process the fluid eventually crosses the 
intermittency boundary ; i.e. i t  is entrained. To an observer moving downstream with 
the vortices, entrained fluid from both sides of the wake appears to be deflected 
upstream or downstream along the diverging separatrix of the saddle. Each vortex 
entrains fluid from both sides of the wake, but the entrainment rates are not the same. 
When the intermittency is superimposed on the velocity field seen by an observer 
moving with the vortices, as in figure 20 ( a )  i t  is clear that  the counterclockwise vortex 
a t  x /d  = 3.13 is entraining substantially more fluid from above than from below. At 
the Reynolds number of this experiment, once a given vortex has been formed, i t  
entrains fluid a t  the highest rate from the side of the wake opposite t o  that from which 
it was shed. This is in contrast with the situation within the vortex-formation region 
where the net rotation sense of a given vortex reflects higher entrainment of 
vorticity-bearing fluid from the side of the cylinder from which i t  was shed. We 
believe that this conclusion is sound in spite of the fact that  i t  is based on 
instantaneous mean streamlines rather than on time-integrated particle paths. 

This conclusion has important implications in any use of a vortex street as a mixing 
device, including use of a thick dividing plate with a blunt trailing edge or a thin 
dividing plate terminated by a bluff cylinder. If the wake were used to mix together 
two initially unmixed reactants supplied, say, in a stoicheiometric ratio in the two 
streams on opposite sides of the wake, then the overall mixture ratios in the vortices, 
where molecular mixing must finally take place, may be far from stoicheiometric. 
Moreover, the effective separation of the two fluids into adjacent vortices introduces 
the vortex coalescence time as an important timescale for mixing, a time which may 
greatly exceed any of the times estimated from dimensional or gradient diffusion 
arguments. 

Turbulence production 

It was pointed out in $4 that  there is strong coupling in the present flow between the 
turbulence and the strain field associated with the large eddies. Further evidence for 
thiscouplingispresented in figure 31 ( b ) ,  whichdepicts contoursofthe two-dimensional 
turbulent energy production (P> a t  constant phase. The definition of production Can 

t For a graphic illustration of the fact that  incorrect conclusions might be reached about 
entrainment when instantaneous mean streamlines are interpreted as mean particle paths in 
unsteady flow, compare figures 17 and 21 in Cantwell, Coles & Dimotakis (1978). 
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FIQURE 31. Contours for mean turbulent-energy production. (a )  p, global mean (contour intervai 
0.010); (b)  ( P ) .  mean at constant phase (7,15).  Note tha t  the range of contour values is greater 
than 100: 1 .  Contour interval is 0.040 for x/d 2 2 ;  contour interval is 0.002 for x / d  > 2.  Dashed line 
is contour ( y )  = 0.5. 

be obtained by continuing the derivation leading to ( 5 )  : 

(13) 

The quantity ( P )  plays the role of an energy sink for the mean flow and an energj 
source for what we call random turbulent fluctuations. No significant regions of 

negative production were found in the present data a t  any phase of the motioii 



366 B. Cantu)elE and D. Coles 

Comparison of figures 2O(a) ,  2 6 ( b ) ,  and 31 (b)  shows that the peaks in production lie 
close to the peaks in (u'ii '), and also close to the saddles in the flow pattern. Some 
experimental data in table 4 include values of the various quantities in (13) for the 
t'wo saddles lying a t  (x/d = 3.1, y/d = 1.0) and a t  (x/d = 5.5, y/d = - 1.0) a t  phase 
(7,15).  According to the table, i t  is the middle term of (13) that  dominates the 
production. 

Similar conclusions about turbulence production have been reached by Hussain 
(1980,1981 ; see also Hussain & Zaman 1981). who studied the flow a t  constant phase 
in an axisymmetric shear layer. Hussain noted that in this flow turbulence was 
produced mainly in the braids between the large vortices and then transported to 
and accumulated in the vort>ices. However, Hussain evaluated only the middle term 
in (13). and he did not comment at, any length either on topology or on the 
mecahanisms of turbulence production. We believe that these two concepts need 
comment. 

Equation (13) defines the turbulence production as the scalar product rij au,/a"r, 
(summed over i = 1 ,2  and j = 1 . 2  for the case of two-dimensional mean flow). The 
numerical value of (P) is not affected by a Galilean transformation or by a change 
in t.he direction of t,he coordinate axes. However, rotation of the coordinate system 
can be a very useful device for weighing the work done by shearing stresses (i + j )  
against t>he work done by normal stresses ( i  =j). 

For this purpose, let the original contraction over both indices be represented in 
a highly schematic form as 

G G  '=(; 2 : ( G  G ) '  
where T stands for rij and G for dui/axj. By a suitable change of axes, the turbulence 
production can be expressed in such a way that only shearing stresses enter into the 
calculation of P .  There are two possibilities; either 

or 

G G  
P = (; 3 : ( G G  

) (laminar only) 

(incompressible). 
O G  '=(; 2 ' ( G  0 )  

Similarly, there are two possibilities for expressing the turbulence production in such 
a way that only normal stresses enter into the calculation. Either 

or 

(rij symmetric) 
G G  '=(o' F): (G G )  
G O  

P = (; 2 : ( O G  
) (irrotational). 

The first form (14) is not relevant for turbulent flow, because the trace of the 
Reynolds-stress tensor (the sum of the Reynolds normal stresses) is both different 
trom zero and invariant to rotation. 

'I'he second form (15) can always be achieved if the fluid is incompressible, because 
I Le trace of the velocity-gradient tensor tlut/i3x, vanishes by continuity. The required 
vbange of axes is a counterclockwise rotation through the angle 8 defined by 

alL atl _ _ _  
ax ay 
au at ) '  

tan 28 = -~ 

-+- ay ax 
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The third form (16) can also always be achieved by transferring to principal Axes 
associated with the symmetric Reynolds stress tensor rii. The required counter- 
clockwise rotation angle is given by 

9 
Jxy 

TXX - Tyy 
tan 28 = 

Finally, the fourth form (17) can always be achieved since rii is symmetric and 
rij aui/axi = +rij(aui/axi + aui/axi). Hence the desired axes are the principal axes of 
the rate-of-strain tensor. From the point of view of (17) a n  important exceptional case 
is irrotationalJEow, fo r  which the velocity-gradient tensor becomes symmetric. I n  this case, 
the required counterclockwise rotation angle is given by 

au av -+- ay  - ax 
au a v '  tan 28 = ___ 
--_ 
ax a y  

The coordinate axes defined by (20) are evidently at 4 5 O  to the coordinate axes defined 

After these preliminaries, we are better prepared to discuss the concept of 
turbulence production. For classical channel flow, for example, and less rigorously 
for any two-dimensional steady mean flow described by a boundary-layer approxim- 
ation, the production already has the form 

by (18). 

O G  
p = ( ;  N o  0 )  

in the original coordinates. Only au/ay is non-zero, with 6 = 0 from (18). A natural 
inference, a t  least within the limitations of global averaging, is that  turbulence 
production in such flows is by shearing strain, through a mechanism which can 
perhaps be visualized as an instability of Kelvin-Helmholtz type. But these same 
flows can also be treated using the form ( l6) ,  which involves only turbulent normal 
stresses and thus seems to  imply production by the different mechanism of vortex 
stretching. When the example of a channel flow is worked out in detail, the apparent 
contradiction turns out to  be one of form and not of substance. No purpose is served 
by considering (16). I n  short, this example suggests that  coordinate transformations 
which operate on the stress tensor rii can be mislesding, and in any event do not lead 
to useful conclusions about turbulence production in flows which are not of boundary- 
layer type. It is rather the velocity-gradient tensor aui/axj which has to be 
manipulated so as to represent correctly the rate-of-strain field of the mean flow, and 
particularly of the mean flow near coherent structures observed a t  constant phase. 

It remains to consider (17) and the special case of a mean flow that is both turbulent 
and locally irrotational. Such flows are so rare that they deserve special attention 
when they do occur; and they occur at saddles in the flow patterns encountered in 
the present work and in the work by Hussain cited earlier. The fact that  calculation 
of ( P )  in tunnel coordinates is dominated by the middle term in (13) is apparently 
an artifact of the choice of coordinates. Consider conditions a t  the first saddle in 
table 4. In  the original coordinates, with the dominant terms underlined, 

0.060 -0.034 ) : ( 0.028 0.330 ) 
= -0.032. 

-0.034 0.077 0.570 -0.044 
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The rotation required by (20) is defined by 

= 12.5, 
0.330 + 0.570 
0.028 + 0.044 

tan 28 = 

from which 8 = 42.7’, in reasonable agreement with the direction of the separatrices 
in figure 20(a). I n  the rotated coordinates 

= -0.032. 
0.034 0.006) : (0.444 -0.120) 

-(‘) = (0.006 0.103 0.120 -0.460 

This example is less than perfect, because continuity is not quite satisfied 
experimentally (divu is -0.016), and the local flow is not quite irrotational (curl u 
is 0.24, compared with a value of 1.99 a t  the adjacent vorticity peak). Nevertheless, 
the data support our claim that i t  is not the peak in (u’zl’) which accounts for the 
large turbulence production, but rather the strong strain field near the saddle. A 
plausible inference is that the mechanism for the observed turbulence production is 
essentially pure extension or vortex stretching. As a final contribution to this topic, 
the globally averaged turbulence production is shown in figure 31 (a) .  The distribution 
of P i s  essentially bimodal about the plane of symmetry of the wake except for a region 
on the centreline a t  about xjd = 1.3, where there is a sharp peak in p. The location 
of this peak is quite close to the wake closure point of the mean velocity field (cf. 
figure 10). Note that this closure point is a saddle of the mean streamline pattern. 
Moreover, the vanishing of the global shearing stress and of the derivatives ati/ay 
and &/ax on the plane of symmetry leaves only vortex stretching as a mechanism 
for turbulence production near the saddle even in the globally averaged flow, 

Concluding remarks 

The present experiments do not shed much new light on the mechanics of vortex 
formation very close to the cylinder, say for 0.5 < x / d  < 1.5. What is certain is that 
random fluctuations in the base region are very large, with both u’/u,, having r.m.s. 
values of 0.4 or more, according to figures 24(b) and 25(b). Turbulent mixing by 
convection a t  inviscid scales, rather than turbulent diffusion a t  viscous scales, is 
probably a sufficient mechanism to account for much of the cancellation of mean 
vorticity in the base region. A decision on this point would be greatly aided by 
simultaneous direct measurements of fluctuations in vorticity and velocity. 

It may or may not be useful to try to define shedding of a vortex from the base 
region of a bluff body as a distinct event. Gerrard (1966) suggests using as a criterion 
the first penetration of non-turbulent freestream fluid across the wake centreline. If 
the interface is taken as the contour ( y )  = 0.5, this event occurs in the present data 
at about phase (7,15) at about x/d = 2.1 (cf. figure 23b). The region of strongest 
penetration lies farther downstream, a t  about x/d = 3, where in figure 23(a) there 
is a local minimum in 7 on the wake centreline a t  which 7 = 0.6. We prefer another 
criterion (mentioned in passing by Gerrard) which is that the mean vorticity has 
become negligible a t  the saddle next upstream of the vortex being shed. This event 
again occurs at about phase (7 ,15)  a t  roughly (xld, y / d )  = (1.6,-0.8) (cf. figure 21 b) .  
Each vortex, once shed, moves downstream under the influence of the induced 
velocity field of the other vortices of the system, with further changes of mean 
vorticity occurring relatively slowly by transfer across adjacent saddles. 

Our data confirm the finding by other investigators that less than half of the 
circulation generated a t  one side of the cylinder during one shedding cycie appears 
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in the vortices downstream. We consider the complementary statement to be equally 
remarkable ; nearly half of the shed circulation does appear in concentrated form. 
There is a powerful tendency for vorticity to accumulate in coherent structures. The 
mechanisms which make these structures relatively stable and permanent are not yet 
clear, but the present research does identify some important elements. 

A plausible conjecture is that  turbulence production near saddles is carried out 
primarily by stretching of small-scale vorticity oriented along the diverging 
separatrices, which cross a t  right angles if there is no local mean vorticity (this remark 
does not take into account the small transport of mean vorticity needed to account 
for the decay of circulation, as discussed in $4 under 'vortex motion'. Given that 
turbulence is already present near the saddles, this turbulence is continuously 
amplified to maintain a state of equilibrium. If the entrainment velocity, which must 
depend on the properties of the local turbulence, were not maintained at a sufficiently 
high value, the flow would break up into islands of turbulence near each centre, and 
this turbulence would presumably decay. Thus the turbulence is strongly coupled to 
the strain field associated with the non-steady mean velocity field. In  fact, the 
mechanism has something in common with the one described for the plane laminar 
mixing layer by Corcos & Sherman (1976). The vortices, once formed and shed, 
generate a strain field which guarantees that there is an energetic level of turbulence 
production near the saddles. The newly turbulent fluid, while it is being transported 
to the centres, controls the local propagation velocity of the interfaces in such a way 
as to preserve the overall geometry of the growing turbulent region and thus of the 
coherent structures. It is  possible, and even likely, that the phenomenon of turbulence 
production by vortex stretching near saddles is  a general, and even  universal, property 
of free turbulent shear Jlows, even when no coherent structure is detectable by any 
means currently available. The role of three-dimensionality a t  large scales therefore 
urgently needs attention if a connection is ever to be made with similarity arguments 
which require the Reynolds number for a round wake to decrease with increasing 
distance (so that the round wake must eventually decay) but require the global 
Reynolds number for a plane wake to  be constant. 

It is important in figure 20 ( a )  that  the entrainment process is not symmetric with 
respect to the diverging separatrix of the saddles. I n  fact, the saddles appear to lie 
on the boundary ( y )  = 0.5, where part of the fluid tends to be deflected without being 
strongly entrained (this property probably does not hold for the mixing layer, for 
which the vorticity in the coherent structures always has the same sense). Further 
evidence for unsymmetric activity a t  saddles between vortices can be found in the 
photographs in figure 32. Figure 32 ( a )  is a schlieren photograph taken by Thomann 
(1959) of the near wake of a wedge at M ,  = 0.5. The arrow points to a linear feature 
which connects two adjacent vortices and lies in the direction of the diverging 
separatrix. This feature is visible because of strong density gradients a t  the saddle. 
Figure 32(b)  is a photograph taken by Meijer (1965) of thc near wake of a cavitating 
flapped hydrofoil. Here the arrow points to  a linear bubble which indicates a region 
of low pressure near the saddle, rather than the high pressure normally associated 
with a stagnation point. We may speculate that in both cases the features are related 
to intense organized concentrations of streamwise vorticity aligned with the diverging 
separatrix of the saddle. Vortex stretching a t  saddles must play a key role in allowing 
entrainment rates to be amplified far above what would be expected on the basis of 
local turbulence intensity alone. I n  short, what we have called random turbulence 
in this paper is neither weak, nor homogeneous, nor isotropic; it has structure. 

Although we have been obliged to adopt the concept of Reynolds averaging for 
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FIQURE 32. Visual evidence for organized structure in the saddle region bet'ween vortices: (a) near 
wake of a wedge at M ,  = 0.5 (from Thomann 1959) ; (b) near wake of a cavitating flapped hydrofoil 
(from Meijer 1965). 

the flow a t  constant phase in order to  have access to language suitable for describing 
production of turbulent energy and other phenomena, we have several reservations. 
The conventions of turbulence imply that turbulent energy is produced at the largest 
scale of the flow (here the scale of the individual vortices) and is then transferred by 
a cascade process to  smaller scales. The evidence of the present experiment, however, 
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is that a substantial fraction of the turbulent energy i s  produced primarily at intermediate 
or even small scales near saddles in the $ow pattern and is later transported to and 
accumulated at centres whose larger scale may be deceptively conspicuous in measured 
spectra or correlations. The conventions of turbulence also imply, at least in the 
context of global Reynolds averaging and a boundary-layer approximation, that 
energy is produced in the streamwise or u-component and is later transferred to the 
v- and w-components by whatever mechanism is represented by the pressure-strain 
covariance in the Reynolds-averaged turbulent-energy equation. This conclusion 
certainly cannot hold for fully developed coherent structures if the dominant 
turbulence production mechanism is vortex stretching a t  saddles, and any boundary- 
layer approximation for Aow a t  constant phase should therefore be avoided. 

Finally, the relevance of the present data to conventional turbulence modelling is 
epitomized by (6) and by figures 24-29. This material is based on the triple 
decomposition of ( l ) ,  in which the departure of any variable from its global mean 
value is represented by the sum of a periodic component and a random component. 
For the mean flow a t  constant phase, the two components have generally comparable 
magnitudes but very different topologies, and the difference extends to the global 
mean in the case of the streamwise velocity component. The importance of both 
periodic and random fluctuations means that neither an inviscid rotational model nor 
a gradient-diffusion model alone can account properly for entrainment and mixing. 
In  particular, the ruinous loss of detail which is encountered when data at constant 
phase are averaged over time goes some way toward explaining why global turbulence 
modelling is more art than science. 

The research reported here was supported by NASA Grant NGL 05-002-229, with 
supplementary support during the later stages of data processing from NSF Grant 
ENG 77-23541 and NASA Grant NCC 2-21. 
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